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A mechanism of stimulated emission of electromagnetic radiation by an electron beam in carbon nanotubes
is theoretically considered. Three basic properties of carbon nanotubes: a strong slowing down of surface
electromagnetic waves, ballisticity of the electron motion over typical nanotube length, and extremely high
electron current density reachable in nanotubes, allow proposition of them as candidates for the development
of nanoscale Cherenkov-type emitters, analogous to traveling-wave tube and free electron laser. Dispersion
equations of the electron-beam instability and the threshold conditions of the stimulated emission have been
derived and analyzed, demonstrating realizability of the nanotube-based nano-free electron lasers at realistic
parameters of nanotubes and electronic beams.
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I. INTRODUCTION

Since the discovery of carbon nanotubes �CNTs� in 1991,1

there has been great interest to their outstanding structural,
electrical, and mechanical properties2,3 due to wide applica-
tions ranging from chemical and biological sensors and ac-
tuators to field emitters to mechanical fillers for composite
materials. Among others, the study of CNTs as building
blocks for nanoelectronics4 and nano-optics5 has continued
to grow unabated owing to the great potentiality for the min-
iaturization and the increase in operational speed of opto-
electronic nanocircuits, and for the use in near-field sub-
wavelength optical element. In that relation, the question of
electromagnetic response properties of CNTs arises. Many
interesting physical effects have been revealed, such as exci-
tation of surface plasmons,6 guiding of strongly slowed-
down electromagnetic surface waves,7,8 antenna effect-
controlled and enhanced radiation efficiency in infrared and
terahertz ranges,9–13 enhanced spontaneous decay rate of an
excited atom in the vicinity of CNT,14 and formation of the
discrete spectrum in thermal radiation of finite-length metal-
lic CNTs in the terahertz range.15 Recently, nanoscale optical
imaging of single-walled CNTs has been studied by means of
high-resolution near-field Raman microscopy,16,17 and an-
tenna operation of a CNT array has been demonstrated
experimentally.18 Reference 19 reports multiwall CNT as
subwavelength coaxial waveguide for visible light.

An intriguing problem of nanoelectromagnetism is the de-
velopment of CNT-based nanoscale sources of light. A
mechanism of the emission of hard x radiation by a charged
particle moving in a CNT has been considered in Ref. 20.
The use of CNTs in x-ray and high-energy particle optics as
focusing and guiding elements, and as x-ray sources is pres-
ently discussed.21,22 In the optical range, the mechanism of
light emission due to exciton recombination in semiconduc-
tor CNTs has been proposed and experimentally verified.23,24

In line with the present-day tendency of the terahertz fre-
quency range exploration and exploitation,25 a possibility of
terahertz emission in CNTs imposed to transverse and axial
electric fields due to electric-field induced heating of electron

gas has been investigated.26–30 Recently, the idea using ki-
netic energy of CNT-guided electron beam for stimulated
emission of electromagnetic waves in optical and terahertz
ranges has been proposed.31–34 In the given paper we present
a consistent theory of the effect.

There is a wide family of devices utilizing interaction of
electron beams with electromagnetic waves to produce elec-
tromagnetic radiation. Started by the invention of
klystrons,35 this family embraces such well-known systems
as traveling-wave tubes �TWT�, backward wave oscillators
�BWO�,36 free electron lasers �FEL�,37–40 etc. In systems of
that kind, synchronous motion of electrons and electromag-
netic wave modulates the electron beam, and coherent radia-
tion is produced by electron bunches. The radiation fre-
quency is smoothly tunable due to its dependence on the
electron-beam energy. Therefore, such type of emitters can
operate in wide spectral range from microwave and infrared
frequencies to vacuum ultraviolet nowadays �e.g., VUV-FEL
at DESY�. Several projects aimed with the lasing in hard
x-ray range have started.41,42

The synchronization of moving electrons and electromag-
netic wave is attained either by slowing down the electro-
magnetic wave �Cherenkov, Smith-Purcell,43 and
quasi-Cherenkov44 radiation mechanisms� or by applying an
external magnetic field, which is uniform in gyrotrons45,46

and spatially periodical in undulators.39 Besides, the
oscillator-type mechanism47 is realized for electrons with
discrete spectrum of transverse motion �for example, for
electron channeling in crystals�. The Cherenkov radiation is
governed by the synchronization condition �−ku=0, where
k is the wave vector and u is the charged particle �electron�
velocity. In systems with external fields the synchronism
condition is transformed to �−ku−�=0 with � as the elec-
tron oscillation frequency. In the oscillator regime � is the
transition frequency between electron levels.48

For the coherent generation in the devices described, a
high vacuum must be maintained in the region of the
electron-beam–electromagnetic wave interaction.49 Other-
wise, collisions of electrons with atoms move electrons out
of the synchronism and, consequently, lasing is not reached.
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From this point of view CNTs are unique objects since they
exhibit ballistic electrical conduction at room temperature
with mean-free paths on the order of microns and even tens
of microns.50–52 Therefore, electrons can emit coherently
from the whole CNT length which is typically 1–10 �m.
Besides, single-walled and multiwalled carbon nanotubes
can carry a high current density of the order of
109–1010 A /cm2, see, e.g., Refs. 53–55. Lastly, metallic
CNTs exhibit a strong, as large as 50–100 times, slowing
down of surface electromagnetic waves.7,8 Thus, a combina-
tion in CNTs of three key properties: �i� ballisticity of the
electron flow over typical CNT length, �ii� extremely high
current-carrying capacity, and �iii� strong slowing down of
surface electromagnetic waves, allows proposition of them
as candidates for the development of nanosized Cherenkov-
type emitters—nano-TWT, nano-BWO, and nano-FEL. Note
that practical realization of the idea in single-walled CNTs
will meet the problem of the ballisticity retaining at high
current density. Some possible ways to get over the problem
are discussed below in Sec. IV.

The remainder of the paper is organized as follows. In
Sec. II we derive dispersion equation for electromagnetic
wave coupled with electron beam, and discuss its solution in
classical and quantum limits. A solution of the boundary-
value problem for a finite-length CNT is presented in Sec. III
allowing evaluation of the absolute instability gain and the
lasing threshold currents. Section IV contains physical analy-
sis of the results obtained and numerical estimates for the
gain and threshold currents. Concluding remarks are given in
Sec. V.

II. RADIATIVE INSTABILITY OF ELECTRON BEAM IN
CARBON NANOTUBE

A. Self-consistent equation of motion for electromagnetic wave
and electron beam

Nanotubes—quasi-one-dimensional carbon macro-
molecules—are obtained by rolling up graphene layer into a
cylinder. The transformation can be performed in different
manners classified by the dual index �n1 ,n2�. The two inte-
gers n1 and n2 represent the vector characterizing the way of
turning, with n1=0 for zigzag CNTs, n1=n2 for armchair
CNTs, and 0�n1�n2 for chiral CNTs. A nanotube can
manifest either metallic or semiconductor properties, de-
pending on its radius Rcn and the direction of rolling up. This
correlation arises from the transverse quantization of charge-
carrier motion and is due to the quasi-one-dimensional topol-
ogy of CNTs; for details see, e.g., Refs. 2 and 3.

Consider an electron beam moving in an isolated single-
walled carbon nanotube oriented along the z axis. The elec-
tron beam can be injected into the nanotube from outside by
an external source or can be produced by applying voltage to
some section of the nanotube. Accelerated by the voltage,
electrons are injected into the working region. Independently
on the origin of electrons, their motion in this region is as-
sumed to be ballistic.

As was mentioned in Sec. I, there is a certain analogy
between a CNT guiding electron beam and macroscopic
vacuum electron devices. The main �and obvious� distinction

is the small cross-sectional radius of CNTs as compared to
their macroscopic analogs. As a result, in CNTs spatial quan-
tization of the electron motion comes into play and, there-
fore, classical models of the electron beam become inappli-
cable. The electron motion in CNTs is governed by quantum-
mechanical equations. In this paper we shall consider the
lasing effect when the generated field is rather large, i.e., the
condition

E � ��c��

c
�2

�1�

is fulfilled.56 In this case the electromagnetic wave has clas-
sical character and is described by the classical wave equa-
tion:

�� · E�r,�� − �E�r,�� =
4	i�

c2 j�r,�� . �2�

If condition �1� does not hold, the number of photons per
quantum level becomes too small to apply a classical ap-
proach and the electromagnetic field must be considered
within the quantum electrodynamics. The quantum-
electrodynamical consideration is of importance on the initial
stage of the instability development, when few photons par-
ticipate in the process. We leave this stage for further analy-
sis to focus on the stage of highly developed instability.
Thus, in our model the electron motion is governed by the
Schrödinger equation while the electromagnetic field is de-
scribed by classical Maxwell equations. In the right-hand
part of field Eq. �2� the quantity j�r ,�� is the current density
averaged over the quantum states of the electron beam.

The current density in the working region is defined by
the well-known equation:57

j�r,t� =
e

2me
�
��r,t�p̂
�r,t� − �p̂
��r,t��
�r,t�	

−
e2

mec


�r,t�
2A�r,t� . �3�

Here p̂=−i�� / ��r� is the momentum operator and A�r , t� is
the vector potential of electromagnetic field. Further we ne-
glect the Fermi law for the electron statistics. This is possible
because the number of excited electrons per quantum level is
found to be small even at superior current densities reachable
in CNTs.53–55 Indeed, the number of levels in the interaction
volume V is estimated as �Vp3 / �2	��3, where p is a typical
value of quasimomentum of electrons in the beam. The num-
ber of electrons in this volume is �neV, where ne is the
electron density. Then, the number of excited electrons per
level is given by �e= �2	��3ne / p3. At current density of
108–1010 A /cm2 and an excitation energy of the order of
several electron volts, we find �e�10−5–10−3. Therefore, the
exchange interaction between electrons in the beam can be
neglected.

Let 
�r , t=0�=
n�r� be the eigenfunction of an electron
noninteracting with electromagnetic wave and moving along
the CNT. When the interaction is switched on, the wave
function is represented by the expansion
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�r,t� = �
l

al�t�exp�− i�lt/��
l�r� �4�

over a complete set of the unperturbed eigenfunctions 
l�r�
with �l as corresponding energy eigenvalues. For further
convenience, we rewrite the coefficients al�t� as al�t�=ln

+al
�n��t�, where ln is the Kronecker symbol. Corrections

al
�n��t� are due to the electron–electromagnetic field interac-

tion. Taking into account axial periodicity of the nanotube
potential, the wave functions 
l�r� can be written in accor-
dance with the Bloch theorem as


l�r� = exp�iplz/�	�
�

bl�exp�i�z	ul��r�� . �5�

Here pl is the axial projection of the quasimomentum of lth
state, bl� are constant coefficient, �=2	q /a are the
reciprocal-lattice constants, a is the CNT spatial period in the
axial direction, ul��r�� are functions dependent only on
transverse coordinates, and q are integers. The term
��bl� exp�i�z	ul��r�� is periodical in the z direction.

In linear approximation, the contribution to electron cur-
rent �3� originated from the electron–electromagnetic field
interaction is described by the equation:

jn�r,t� =
e

2me
�

l

�al
�n���t�exp�i��l − �n�t/���
l

��r�p̂
n�r�

− �p̂
l
��r��
n�r�	 + al

�n��t�exp�− i��l − �n�t/��

��
n
��r�p̂
l�r� − �p̂
n

��r��
l�r�		

−
e2

mec


n
2A�r,t� . �6�

Then, applying to Schrödinger equation standard
perturbation-theory technique,57 we obtain the equation de-
scribing the dynamics of the coefficients al�t�:

i� � �al
�n��t�
�t


l�r�exp�− i�lt/��

= −
e

2mec
� �A�r,t�p̂ + p̂A�r,t��
n�r�exp�− i�nt/�� ,

�7�

which is obtained by substitution of Eq. �4� into the
Schrödinger equation and its subsequent linearization with
respect to the electromagnetic field strength. The Fourier
transform of Eq. �7� gives

al
�n���� =

e

2me��c
l
A�r,� +

�l − �n

�
�p̂

+ p̂A�r,� +
�l − �n

�
�
n� . �8�

Here we use the standard ket and bra notation of wave func-
tions and matrix elements, 
l�=
l�r�. Only those terms are
preserved in Eq. �8� which corresponds to resonant interac-
tion between electrons and electromagnetic field. Contribu-
tion of the last term in Eq. �6� is therefore neglected in Eq.
�8�. Performing the Fourier transform of Eq. �6� along the

axial coordinate and time, we come to the k ,�-space
interaction-induced current-density correction:

jn�k,r�,�� = −
e2

4me
2c

�
l

Bnl�k,r�,���
���

� �−
bl��

� bn��ul��
� �p̂n + �� + �p̂n + ��ul��

� �un�

�� + �l�pn − k� − �n�pn�

+
bn�

� bl���un�
� �p̂n + �� + �p̂n + ��un�

� �ul��

�� + �n�pn� − �l�pn + k�
� .

�9�

For convenience, we have introduced the vector form for the
lattice constant �: �=�ez, where ez is the unit axial vector.
The quasimomentum operator in matrix elements is given by
p̂n= �p̂� , pn	, where axial components pn are C numbers and
transverse components p̂� are operators. These operators act
only on the right-adjacent functions. Deriving Eq. �9�, we
neglect the longitudinal component k of the electromagnetic
wave vector in matrix elements since �k / pn�1. Summation
over the lattice constants � and �� is not independent: for
every � in sum, the value of �� must be such that the values
pn+�−�� are in the first Brillouin zone. The coefficients
Bnl�k ,r� ,�� are given by

Bnl�k,r�,�� = �
���

bl��bn�
� un�
�p̂n + ��A�k,r�,��

+ A�k,r�,���p̂n + ��
ul��� .

Substituting then Eq. �9� into Eq. �2�, we come to a self-
consistent field equation necessary for the further analysis.

B. Dispersion equation for electromagnetic wave coupled with
electron beam

Electromagnetic response properties of an isolated single-
walled CNT was studied in Ref. 7 on the base of a tight-
binding microscopic model of the CNT conductivity and the
effective boundary conditions for electromagnetic field im-
posed on the CNT surface. A detailed analysis of the eigen-
wave problem has revealed propagation in CNT strongly
slowed-down surface waves allowing the concept of nano-
tubes as surface-wave nanowaveguides. Considering the
electron beam as a perturbation, we can use the dispersion
equation for the surface waves and the propagation constants
obtained in Ref. 7 as a zero-order approximation. Then, the
self-consistent field of the electromagnetic wave coupled
with electron beam can be presented by the expansion

A�k,r�,�� = �
m

�m�k,��Am�r�� , �10�

where vector potentials Am�r�� correspond to the electro-
magnetic field eigenfunctions evaluated in Ref. 7 and
�m�k ,�� are the coefficients to be found. Substitution of Eqs.
�6�, �9�, and �10� into Eq. �2� gives the system of equations
for the electromagnetic field interacting with the electrons
occupying nth state:
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�
m

�k2 − km
2 ��m�k,��Am�r��

= −
4	

c

e2ne

4me
2c

�
l

Bnl�k,r�,���
���

� �−
bl��

� bn��ul��
� �p̂n + �� + �p̂n + ��ul��

� �un�

�� + �l�pn − k� − �n�pn�

+
bn�

� bl���un�
� �p̂n + �� + �p̂n + ��un�

� �ul��

�� + �n�pn� − �l�pn + k�
� . �11�

Here km are the wave numbers corresponding to the physical
system devoid electron beam. As one can see, deriving Eq.
�11� we have proceeded from the single-electron dynamics to
the dynamics of the electron beam: ne is the electron density.
Multiplying left-hand and right-hand parts of Eq. �11� by
Am

� �r�� and utilizing the wave functions’ orthogonality, we
come to the dispersion equation as follows:

k − km = −
�L

2

8kmmec
2�

l


Bnl
�m�
2

� � 1

− �� + �n�pn� − �l�pn − k�

+
1

�� + �n�pn� − �l�pn + k�� . �12�

The upper index in Bnl
�m� relates the matrix element with the

corresponding mode of the electromagnetic field Am�r��;
�L=2�	e2ne /me is the Langmuir frequency of the electron
beam.

Transcendent dispersion Eq. �12� predicts the existence of
a variety of branches of wave number k. Among them, the
number of branches to be accounted for is defined by specific
physical parameters of analyzed system. In the vicinity of a
resonance, only terms corresponding to the resonant interac-
tion, one or several �in the case of level degeneration� can be
kept in the dispersion equation. If the difference between
levels exceeds the linewidth, only the resonant term is of
importance.

C. Classical and quantum limits in synchronism conditions

Two terms in the right-hand part of Eq. �12� dictate two
synchronism conditions corresponding to the resonant inter-
action between electron beam and electromagnetic wave:

��� + �n�pn� − �l�pn � k� = 0. �13�

The signs “+” and “−” correspond to the absorption and the
emission of photon by electron, respectively. Dependently on
the relation between electron and photon energies, different
interaction regimes are realized. As we restricted ourselves to
the case when the photon momentum is much less than the
electron one, the electron energy �l�pn��k� can be pre-
sented by the truncated Taylor series as

�l�pn � �k� = �l�pn� � �k
��l�pn�

�pn
� �l�pn� � �kvl,

where vl is the electron group velocity. Then, denominators
in Eq. �12� can be represented by

��� + �n�pn� − �l�pn � k� � � ��� − kvl � �nl�

+
�2

2

�2�l

�pn
2 k2. �14�

The first term in the right-hand part of this equation is analo-
gous to the standard term �−ku�� in the synchronism
condition.47 The only difference is that the velocity of free
electrons is replaced by the group velocity of quasielectrons
vl and the undulation frequency is replaced by the transition
frequency �nl= ��n�pn�−�l�pn�� /� between CNT energy
bands. The last term in Eq. �14� originates from the quantum
recoil of electron during emission �absorption� of photon and
induces a redshift �blueshift� of the transition frequency. This
term is inversely proportional to the electron effective mass
�second derivative of the energy�. Let l=s be an electron
level corresponding to the resonant interaction. Then, within
the approximation stated, the dispersion equation takes the
form as follows:

k − km =

2

�
bns

�m���k2

2

�2�s

�pn
2 − �ns�

�� − kvs�2 − ��k2

2

�2�s

�pn
2 − �ns�2 , �15�

where

bns
�m� = −

�L
2�

8mekm� c2 
Bns
�m�
2, km� = Re�km� .

In the case of intraband transitions, �ns=0 and Eq. �15� takes
the form of the dispersion equation for the instability with
the recoil accounted for.37

Depending on ratio between the radiation linewidth and
the recoil-induced detuning, two different generation regimes
are realized. In the low-gain limit39 the spontaneous emission
linewidth can be estimated as �� /��c / ��L�, where L is
the interaction length. If the linewidth exceeds the recoil en-
ergy, the recoil term in the denominator of Eq. �15� can be
neglected and the classical interaction regime is realized. The
dispersion equation in that case takes the traditional form of
the second-order Cherenkov resonance:

k − km = k2�2�s

�pn
2

bns
�m�

�� − kvs�2 . �16�

The spatial increment of the instability k�=Im�k� can be es-
timated using the method of weakly coupled modes.58 Ac-
cording to this method, interaction between the electromag-
netic wave and the electron beam is essential only in the
vicinity of the point ��0 , k0=�0 /vs� where the dispersion
curves of noninteracting modes, �−kvs=0 and k���=km���,
are crossed. Then km is represented by the expansion
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km��� = k0 + � �km���
��

�
�=�0

�� − �0� . �17�

Substitution of this expansion and k=k0+�k into Eq. �16�
results in a third-order algebraic equation with respect to �k.
From this equation, the instability spatial increment is esti-
mated at the frequency �=�0 as


�k�
 =
�3

2
�bnn

�m��
2�n

�pn
2

k2

vn
2�1/3

, �18�

where �k�=Im��k�. Since bnn�ne, the increment is found to
be the third root of the electron density. Such a dependence is
typical for the Compton-type radiative instability.39

In the opposite case, when the linewidth is less than the
difference between the emission and the absorption frequen-
cies, we fall into regime of the strong quantum recoil impact.
In this case, only the term corresponding to the emission
survives in dispersion Eq. �12�, which therefore is reduced to

k − km =
bnn

�m�

�

1

� − vsk −
�

2

�2�n

�pn
2 k2

. �19�

As a result, the instability increment is given by


�k�
 = �bnn
�m�

�vn
�1/2

, �20�

i.e., turns out to be proportional to the square root of the
electron density.

Below we present a detailed discussion of the different
generation regimes and give some numerical estimates of
physical parameters corresponding to these regimes.

III. STARTING CURRENTS AND THEIR DEPENDENCE
ON THE NANOTUBE LENGTH

A. Boundary conditions for a finite-length nanotube

In Secs. II B and II C, dispersion equations have been
derived providing us with wave-number eigenvalues in an
infinite-length CNT guiding electron beam. As a next step,
the system must be imposed by edge conditions accounting
for the finite length of the interaction zone. These conditions
are stated as the requirement to perturbations of the electron
and current densities, generated by the electron-beam–
electromagnetic wave interaction, to be zero at the input of
the working zone, i.e.,

ne�z = 0� = jn�z = 0� = 0. �21�

The condition that the tangential electric-field component
and the axial component of the magnetic field be continuous
on the CNT surface yields additional boundary condition. We
write it in the simplified form59 as

E�z = 0� = �E�z = L� , �22�

where � is the reflection coefficient of electromagnetic field
from the working zone boundaries.

The field distribution in a finite-length system consisting
of several parts can be found by solving electrodynamical

problem in each region separately and then joining the solu-
tions by means of boundary conditions. In the interaction
region, the electromagnetic field is given by

E�z� � �
i=1

N

ci exp�ik�i�z� , �23�

where the summation is performed over all electromagnetic
modes in CNT; the wave numbers k�i� are determined by
corresponding dispersion equations. Note that the reflection
of electromagnetic waves from boundaries back into the
working zone creates positive feedback in the system, and
thus allows accumulation of the electromagnetic energy and
provides an oscillator regime.

B. Starting current at a large quantum recoil

In the quantum interaction regime, when the quantum re-
coil exceeds the linewidth, the instability is described by
quadratic dispersion Eq. �19� with solutions k�1� and k�2�.
Consequently, the electric field and the perturbation of the
current density in the working zone are given by

E � c1 exp�ik�1�z� + c2 exp�ik�2�z� , �24�

jn �
c1

1
exp�ik�1�z� +

c2

2
exp�ik�2�z� . �25�

The coefficients

1,2 = 1 −
vn

�
k�1,2� +

�

2�

�2�n

�pn
2 k�1,2�2 �26�

introduce deviations of the wave numbers k�1� and k�2� from
the synchronism, and the coefficients ci are determined from
the boundary conditions as was discussed in Sec. III A. Us-
ing boundary conditions �21� and �22�, we arrive at the linear
system for ci as follows:

c1 + c2 = ��c1 exp�ik�1�L� + c2 exp�ik�2�L�� ,

c1

1
+

c2

2
= 0. �27�

Nontrivial solution of this system is determined by the equa-
tion

1�1 − � exp�ik�1�L�� − 2�1 − � exp�ik�2�L�� = 0. �28�

A current density satisfying Eq. �28� is the threshold current
density of the generation. To evaluate this quantity, charac-
teristic Eq. �28� must be solved together with Eq. �19�. Sub-
stituting the roots

k�1,2� = km,ch +
bnn

�m�

�vn�kch − km� �
�29�

of dispersion Eq. �19�, with kch extracted from the synchro-
nism condition �−kchvn+ ��kch

2 /2��2�n /�pn
2=0, into Eq. �28�

and solving the resulting equation with respect to the current
density, we obtain
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bnn
�m�

�vn
L2sin2 x

x2 = 1 − 
�
 + Lkm� , �30�

where

x = �� − km� vn +
�km�

2

2

�2�n

�pn
2 � L

2c
�31�

is the dimensionless off-synchronism parameter.
Physically, Eq. �30� establishes the energy balance in the

working zone. Its left-hand part determines the radiation pro-
duction which is therefore proportional to the electron den-
sity ne and to the squared interaction length. The factor
sin2 x /x2 determines the so-called gain curve—the gain de-
pendence on the off-synchronism parameter x. In the case
considered the gain curve is symmetrical with respect to x
=0 and is maximal at zero deviation x. Further we compare
this result with the classical case of small recoil and demon-
strate significant difference in the behavior of gain curves.
The term 1−� in the right-hand part of Eq. �30� corresponds
to the radiation leakage through the boundaries of the inter-
action zone while the last term specifies the radiation absorp-
tion by nanotube.

Energy balance Eq. �30� allows the evaluation of the
threshold current density. If the current density in CNT ex-
ceeds the threshold value, the generation process is devel-
oped. The characteristic time of the instability development
is inversely proportional to the absolute instability increment
��=Im���, which is derived by solving generation Eq. �28�
with respect to ��k�. In the low-gain regime,39 which implies
the conditions 
�k�
L�1 and 1−��1 to be fulfilled, the
increment is given by

�m� = � �km

��
�−1�bnn

�m�

�vn
L

sin2 x

x2 −
1 − 
�


L
− km� � . �32�

In the linear stage of the radiative instability development,
the electromagnetic field grows with time as exp��m� t�.

C. Starting current in the classical regime of interaction

In the case when quantum recoil can be neglected, disper-
sion Eq. �16� gives three roots

k�1� = km − bnn
�m��

2�n

�pn
2

km�
2

�� − vnkm� �2 ,

k�2,3� = kch �
i

vn
�bnn

�m��
2�n

�pn
2

km�
2

kch − km�
. �33�

and, consequently, electromagnetic field in the interaction re-
gion is given by Eq. �23� with N=3. Correspondingly, per-
turbations of the electron and the current densities in the
beam are written as

jn � �
i=1

3
ci

�i
2 , jn − vnne � �

i=1

3
ci

�i
, �34�

where deviations �i are given by Eq. �26� with the last term
omitted, i.e., �i=1−k�i�vn /�. Then, by analogy with the pre-
vious section, we obtain the linear system

c1 + c2 + c3 = ��c1 exp�ik�1�L� + c2 exp�ik�2�L�

+ c3 exp�ik�3�L�� ,

c1

�1
+

c2

�2
+

c3

�3
= 0,

c1

�1
2 +

c2

�2
2 +

c3

�3
2 = 0, �35�

and corresponding generation equation

�1
2��2 − �3��1 − � exp�ik�1�L�� − �2

2��1 − �3��1

− � exp�ik�2�L�� + �3
2��1 − �2��1 − � exp�ik�3�L�� = 0.

�36�

This equation we solve in the low-gain limit, which is deter-
mined by the condition kz�L�1. The curve depicted in Fig. 1
divides out areas of parameters corresponding to low-gain
and high-gain regimes, respectively. Then, solutions of Eq.
�36�—the threshold current and the temporal instability
increment—are given by

bnn
�m�

vn
2

�2�n

�pn
2 kL3x cos x − sin x

x3 = 1 − 
�
 + Lkm� , �37�

�m� = � �km

��
�−1�bnn

�m�

vn
2

�2�n

�pn
2 L2x cos x − sin x

x3 −
1 − 
�


L
+ km�� .

�38�

with the parameter x defined by Eq. �31�. As follows from
balance Eqs. �30� and �37�, in the quantum interaction re-
gime the radiation production per unit length is characterized
by the linear dependence on L while this dependence be-
comes quadratic in the classical regime. Besides, the gain
curves display distinctive behavior in these two cases. As
different from the quantum interaction regime, in the classi-
cal limit the gain curve has asymmetrical character39 due to

FIG. 1. �Color online� Demarcation between low-gain and high-
gain regimes of generation Eq. �36�.
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the interference of absorption and emission processes sepa-
rated in this case by a frequency gap narrower than the line-
width. As a result, sign of the absolute instability increment
depends on the sign of the synchronism detuning. At positive
detuning the system is closer to the absorption frequency
while negative detuning moves the system to the emission
frequency.

Qualitatively, the classical and quantum interaction re-
gimes are divided by the demarcation line depicted in Fig. 2.
In the area above the line the quantum recoil at the genera-
tion must be taken into account while in the area below the
line this effect can be ignored. The line course can easily be
explained just by the increase in the photon energy with fre-
quency. In addition, the increase in the generation length L
leads to narrowing of the gain line and, as a result, the quan-
tum recoil comes into play at smaller frequencies.

D. Role of electron spread

If electrons in the beam are distributed over a large num-
ber of energy levels and energy spread significantly exceeds
the gap between emission and absorption lines, the total cur-
rent is obtained by summation over this distribution. The
generalization of Eq. �16� on this case is obvious:

k − km��� = − bnn
�m�� dvf�v�

�2�n

�pn
2

k2

�� − vk�2 .

This equation can be rewritten in the form, conventional in
plasma physics:57

k − km��� = bnn
�m�k

�2�n

�pn
2 � � f�v�

�v

dv
� − vk + i0

. �39�

Deriving Eq. �39� we assumed the dependence of the nor-
malized distribution function ��f�v�dv=1� on the group ve-
locity to be narrower than corresponding dependences of the
matrix element bnn

�m� and second derivative of the energy
�2�n /�pn

2. Then, considering the group-velocity spread ex-

ceeding the spontaneous emission linewidth, ��v /c
�c / ��L�, in Eq. �39� we can make use of the standard rep-
resentation

1

� − vk + i0
= P 1

� − vk
− i	�� − vk� . �40�

The principal value of the integral determines the real-valued
component which is out of our interest.

If resonant interaction between electron beam and electro-
magnetic field occurs in the region of the negative derivative
of the distribution function, i.e., �f�v� /�v�0, then k��0
and the generation process is not developed �we choose the
exp�ikL� dependence�. This is because the majority of elec-
trons in that case have velocities smaller than the resonant
velocity and therefore they absorb the electromagnetic wave
energy. Such a situation takes place in equilibrium, when the
number of particles occupying energy level grow less with
the level energy increase. In such a system, an initial pertur-
bation attenuates. This process is commonly known as the
Landau attenuation.

If the resonance is in the region with positive derivative
�f�v� /�v�0, the radiative instability is possible and obeys
the condition

km� − 	bnn
�m��

2�n

�pn
2 � � f�v�

�v
�

v=�/k
� 0, �41�

which originates from the requirement k��0 and from Eqs.
�39� and �40�. Condition �41� expresses the excess of emis-
sion over absorption. As one can see, the emission per unit
length does not depend on the interaction length.

The imaginary part of the wave number k describes the
asymptotic exponential behavior of the electromagnetic field
in a continuous medium. To reach generation in a finite re-
gion, corresponding boundary conditions must be imposed.
At a large spread, when the resonant term in Eq. �39� can be
presented by Eq. �40�, dispersion Eq. �39� has the only root.
Using Eq. �22� we arrive at the relation c1=� exp�ik�1�L�c1,
which dictates the generation equation as

1 − � exp�ik�1�L� = 0. �42�

For the Cherenkov radiation mechanism, solution of Eq. �42�
leads to the equations as follows for the threshold current
density and the absolute instability increment:

	bnn
�m��

2�n

�pn
2 L� � f�v�

�v
�

v=�/k
= 1 − 
�
 + Lkm� , �43�

�m� = � �km�

��
�−1�	bnn

�m��
2�n

�p2 � � f�v�
�v

�
v=�/k

−
1 − 
�


L
− km�� .

�44�

Equation �44� shows that the production of stimulated radia-
tion in the case of large spread is defined by the spread and
falls down with its increase. The line dividing the range of
parameters into two domains, with weak and strong influ-
ences of the energy spread, is depicted in Fig. 3. With the
CNT length increase, the role of the spread also rises due to
the gain line narrowing.

FIG. 2. �Color online� The curve divides the regions of param-
eters with small and large impacts of the quantum recoil on the
generation. The curve has been obtained for the low-gain regime.
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The extension of the obtained generation conditions to the
case of interband transitions �i.e., to the undulator regime� is
obvious and, in accordance with dispersion Eq. �15� for the
undulator regime, is achieved by the substitution �−kvn
→�−kvs−�ns in off-synchronism parameter �31�, and the
substitution �k2�2�n /�pn

2→�k2�2�s /�pn
2−2�ns in expres-

sions for threshold currents �30�, �37�, and �43�, and for ab-
solute instability increments �32�, �38�, and �44�.

The analytics presented in this section implies fulfillment
of several simplifying approximations: smallness of the pho-
ton momentum �k / p�1, small or large influence of the elec-
tron recoil on the emission �absorption�, and small or large
electron spread. Obviously, the analytical approaches do not
work in intermediate cases; Eq. �12� supplemented by corre-
sponding boundary conditions requires numerical integra-
tion. The number of roots of the dispersion equation to be
accounted for and corresponding number of boundary condi-
tions to be imposed is dictated by concrete physical param-
eters of the system being considered.

IV. PHYSICAL ANALYSIS AND NUMERICAL ESTIMATES

In Sec. II A it has been stated that classical treatment of
electromagnetic field is valid if the field strength Ee amounts
to a certain sufficiently large value. This value is determined
by the condition imposed on the number of photons per en-
ergy level to exceed unity.57 At the initial stage of the insta-
bility development, with less than one photon per energy
level, the photon dynamics is described within the quantum
electrodynamics formalism.

Usually, the number of photons per energy level is given
by nph�c /��3, where nph is the photon number per unit vol-
ume while the quantity �� /c�3 determines the number of
photon levels lying below the energy ��. As different from
that, in the case of high-coherent laser radiation, the radiation
is concentrated in a narrow spectral range ���c /L. As a
result, the parameter defining the possibility of classical con-
sideration of electromagnetic waves—the number of photons

per energy level—is derived as the density of the beam’s
kinetic energy converted to electromagnetic field divided by
the photon energy and the number of levels below ��. The
ratio is found to be

��ph
j

ve
� c

�
�2

L
kmc

�

mc2�� − 1�
��

,

where j is the current density, v is the electron velocity, and
�ph is the efficiency of the transfer of electron kinetic energy
to electromagnetic field. For infrared photons and electrons
of several electron volt energy and �10 �m length nano-
tube, the photon number per energy level exceeds unity �i.e.,
the classical treatment is possible� if �ph�10−5. Since the
initial stage of the instability development is beyond the
scope of our paper, the parameter �ph can be estimated from
the relation �ph�1 / �kL��0.02, which corresponds to so-
called nonlinear saturation regime39 and determines the
electron-beam energy conversion in saturation. Therefore,
generation threshold and nonlinear stage of the instability
development can be considered classically.

The simplest way to realize nano-FEL in carbon nanotube
is to inject into it a high-energy external electron beam.
Since the velocity of free electron is v�cm /s�=5.7
�107���eV�, in order to accelerate electrons up to velocities
providing the synchronism regime �with 50–100 times wave
slowing down predicted in Ref. 7�, it is necessary to apply
voltage of ��7 eV. If the CNT diameter is such that its
product with the electron transversal momentum is p�D /�
�10–100, the electron motion can be treated as classical. In
that case, the term in the right part of dispersion Eq. �16� can
be modified in the following way

bnn
�m��

2�n

�pn
2

k2

�� − vnk�2 � �L
2 �ve�2

2km� c2

k2

�� − vk�2 , �45�

where v is the classical electron velocity and e is polarization
vector for the electromagnetic mode considered. This simpli-
fication, after substitution of Eq. �45� into Eqs. �37� and �38�,
allows us to estimate the threshold current required to start
the generation process and the instability increment, respec-
tively. The dependences of these quantities on the CNT
length are depicted in Figs. 4 and 5. Calculations have been
done for 1 �m radiation wavelength and for the reflection
coefficient from the working zone boundaries �=0.99. Gen-
eration in the terahertz range would require higher current
density. It follows from Fig. 5 that the gain for CNT is ex-
tremely large as compared with macroscopic electronic de-
vices. For chosen parameters, the generation development
starts when the CNT length is about 6 �m or larger, which
is technologically routine range. Therefore, our calculations
demonstrate that the development of CNT-based nano-FEL is
already possible at the current stage of nanotechnology. The
characteristic time of the instability evolution is inversely
proportional to the instability increment and, for 10 �m
nanotube, is a fraction of nanosecond.

A positive feedback is required for the realization of os-
cillator regime; reflection from CNT ends10 can serve as a
possible mechanism of the feedback. The reflection can be
intensified by variation in the CNT generic parameters,

FIG. 3. �Color online� The regions of parameters with small
�below curve� and strong �above the curve� influences of the
electron-beam spread.
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proper selection of surrounding medium, and using other
methods commonly applied in laser physics and electronics.
An alternative mechanism providing the feedback is excita-
tion of backward modes propagating oppositely to electron
flow. The backward modes are possible because CNTs are
periodic along their axis and, consequently, their eigenmodes
are Bloch modes containing waves with both positive and
negative phase velocities. As a result, there exist Bloch
modes with group velocity directed oppositely to the electron
velocity—the backward modes.40 One of the waves of the
backward mode having a positive phase velocity can be syn-
chronized with the electron flow. In this case the positive
feedback is provided automatically.

The instability process is developed only if the electron
free-path length is comparable or even exceeds the working
zone length, i.e., the electron motion is ballistic within the
zone. Otherwise, random collisions of electrons cause a
phase shift which prevents the electron flow bunching and
breaks the radiation coherence. As was mentioned above, in
metallic single-walled CNTs the free-path length is about
several microns.50–52 A longer ballisticity area can be pro-
vided by proper external conditions. For example, in a regu-
lar array of oriented nanotubes the suppression of electron

collisions with atoms can be achieved using the properties of
the electron diffraction in periodical structures. In a densely
packed array of CNTs—CNT bundle—nanotubes form a lat-
tice with the distance between CNTs’ axes 2Rcn+d, where
d�3.2 Å is the interlayer distance in graphite. Correspond-
ingly, the reciprocal-lattice vector in such a lattice has the
value h=2	 / �2Rcn+d�. From the principle of uncertainty we
can estimate the transverse component of the momentum by
p� /��2	 /2Rcn. Obviously, the Bragg condition 
p�+h

�
p�
 can be fulfilled for a large portion of electrons passing
the bundle and six-wave diffraction60 can be realized. Owing
to the diffraction, electrons are concentrated in domains free
of atoms and, therefore, scattering is weak for such electrons.
Analogous situation meet in the Bormann effect60 for hard x
rays passing through a crystal. Owing to this effect, a signifi-
cant increase in the photon free path is observed. The in-
crease in the electron free-path results in the increase in the
generation length L and, consequently, in the strong decrease
in the threshold current. Thus, the use of CNT bundles in-
stead of isolated single-walled CNTs is a rote to retain bal-
listical regime of the electron motion at required values of
the threshold current. Even if generation conditions are pro-
vided by the use of external electron beam, the idea to ex-
ploit intrinsic electrons of CNTs looks very attractive be-
cause it would solve the dramatic problem of focusing an
external electron beam into a spot of the CNT diameter size.
Typical velocity of 	 electrons excited to energy of several
electron volts is about3 108 cm /s. For such electrons, the
synchronism condition requires the electromagnetic wave
slowing down as large as 300 times, which is much larger
than the theoretical estimate7 gives for CNTs.

In such a situation, special configurations providing
higher group velocity are extremely desirable; otherwise,
stronger excitation of electrons is necessary to fulfill the
Cherenkov generation condition. Fortunately, as compared to
vacuum electronic devices, stimulated emission in CNTs fea-
tures a set of new promising properties. In macroscopic
Cherenkov FELs the electron energy ordinarily rises with the
electron velocity and, in nonrelativistic regime, quadratically
depends on the momentum �and velocity�. As a result, the
only way to reach the synchronism condition in that case is
to increase the electron-beam energy. For a collective �quasi�
electrons in CNT, such is not the case. Indeed, the electron
group velocity, which is analog of the velocity for quasipar-
ticles, is determined by the properties of the whole system
and may demonstrate nontrivial dependence on the quasimo-
mentum. Locally, the quasiparticle velocity may recede as
energy rises. Correspondingly, local maxima of the group
velocity may appear. If one seeks the synchronism condition
for a low-energy quasiparticle, it is advantageous to choose
parameters in the vicinity of the group velocity local
maxima. It allows attaining the synchronism in a relatively
low accelerating potential and, therefore, significantly re-
duces the CNT energy load.

Let us exemplify the statement considering an isolated
straight �q ,q� armchair CNT. The dispersion law of 	 elec-
trons in such a CNT is given by2

FIG. 4. �Color online� The dependence of threshold current den-
sity on nanotube length.

FIG. 5. �Color online� Instability increment vs nanotube length
at different electron current densities.
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�l�p� = � �0�1 � 4 cos�	l/q�cos�ap� + 4 cos2�ap��1/2,

�46�

where �0�2.7 eV is the overlap integral, l=1, . . . ,2q, a
=�3b /2�, and b=1.42 Å is the interatomic distance in
graphite. The upper and lower signs refer to the conduction
and valence bands, respectively. The group velocity corre-
sponding to this law is

vl = � 2�0a sin�pa�

�
�cos�	l/q� − 2 cos�pa�

�1 � 4 cos�	l/q�cos�pa� + 4 cos2�pa��1/2 . �47�

Calculations of the energy and the group velocity for �10,10�
nanotube by Eqs. �46� and �47� are presented in Fig. 6. The
curves in two figures can easily be correlated: The larger
slope of the dispersion curve the larger the group velocity.
Typical velocity of 	 electrons excited to energy of several
electron volts is about3 108 cm /s. For such electrons, the
synchronism condition requires the electromagnetic wave
slowing down as large as 300 times. A proper choice of the
excited state in the vicinity of the group-velocity local maxi-
mums allows essential weakening of this restriction.

The region in the vicinity of the group-velocity extremum
is also attractive because of the weak velocity dependence on
the quasimomentum. As a result, in this region irradiation of
photon gets the electron only slightly out of the synchronism
condition keeping high the probability to emit next photon.
Due to that, the radiation effectiveness grows in the vicinity
of the group-velocity extremum. An additional advantage of
the local maximum in the group velocity is the smaller nega-
tive influence of the beam energy spread on the generation
effectiveness. Indeed, in the vicinity of the group-velocity
extremum, the Taylor expansion of the energy does not con-
tain linear quasimomentum terms. As a result, a larger num-
ber of particles in a spreaded beam appear to be synchro-
nized with electromagnetic wave. This effect is characteristic
for quasiparticles and fully absent for free electrons.

The effect of radiation instability in nanotube can be con-
trolled by the variation in the electron effective mass. The
smaller the mass the more responsive the electron is to per-
turbation, and the more likely an electron-beam bunching
occurs. This means faster development of the instability. The

reciprocal electron effective mass is given by the quantity
�2�n /�pn

2; therefore, the increase in the instability increment
as the effective mass grows smaller follows immediately
from dispersion Eqs. �16� and �39�, which involve the recip-
rocal mass.

One more mechanism, which does not require large wave
slowing down, is exploiting electron interband transitions. In
this case, as follows from Eq. �15�, the resonance condition
is �−vsk=�ns �we suppose that transition frequency exceeds
the term related to the recoil� and the radiation frequency can
vary from infrared to ultraviolet. For interband transitions,
single-particle spontaneous emission of electron �positron�
beams emerging from outside into nanotube was considered
by Artru et al.21

In order to weaken the requirement imposed on the elec-
tromagnetic wave to be slowed down to the electron velocity,
one can utilize the photon diffraction on a periodic lattice of
carbon atoms in a nanotube. Resonance interaction takes
place for harmonics corresponding to the reciprocal vector �
satisfying the condition �−vn�k+��=0. Then, taking into ac-
count the condition vn /c�1, one can obtain

�� =
�vn

1 − nrefvn/c
. �48�

Here nref=kc /� is the effective refractive index of corre-
sponding mode. The spatial period of a nanotube varies in
wide range. For zigzag and armchair nanotubes, it is equal to
2.49 Å while for chiral nanotubes the translation period
achieves 10 nm and more depending on the nanotube indi-
ces. As a result, the generated wavelength varies from ultra-
violet �for armchair and zigzag CNTs� to infrared range for
nanotubes with translation period �2�3	Rcn.

V. CONCLUSION

In the present paper, aiming at the development of the
physical basis of a unique class of nanosized light sources,
we have investigated theoretically a recently proposed
mechanism of the generation of stimulated electromagnetic
radiation by electron beam in carbon nanotubes. The basic
idea exploits an analogy between CNTs and macroscopic
electron devices and utilizes the effect of wave slowing
down in waveguides. Three basic properties of carbon nano-

(a) (b)

FIG. 6. �Color online� �a� Energy and �b� group velocity vs quasimomentum for �10,10� armchair nanotube. The numbers near the curves
numerate different modes.
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tubes: the strong slowing down of surface electromagnetic
waves, the ballisticity of the electron motion over typical
CNT length, and the extremely high electron current density
reachable in CNTs, allow proposition of them as candidates
for the development of nanoscale Cherenkov-type emitters
for a wide frequency range from terahertz to optical. The
threshold conditions evaluated from the theoretical model
demonstrate that the development of CNT-based nano-FEL is
already feasible at realistic present-day parameters of nano-
tubes. The use of CNT bundles is proposed as a means to
decrease the threshold current density. Currently, we explore
the possibility of reducing the generation voltage by the use
of multiwalled CNTs, where electromagnetic modes exist61

with phase velocity essentially less than that predicted for
single-walled CNTs.7 Generation on such a mode requires
much less bias since U�vph

2 . Detail analysis will be pub-
lished elsewhere.
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